人大人科创
张江-硅谷创新创业平台

【新材料●新能源●低碳环保】 2018 第十七期 沈真五论国产碳纤维产业化之路;碳纤维在国际市场的应用情况分析;美国科学家用植物制造碳纤维 有效降低成本与污染

【新材料新能源低碳环保】 2018 第十七期 沈真五论国产碳纤维产业化之路;碳纤维在国际市场的应用情况分析;美国科学家用植物制造碳纤维 有效降低成本与污染


2018-07-08张江发展战略研究院

采编 | Paul

微信 ID | rdryaobd

微信| (ID:
上海人大人科学发展研究院)




宏观视野


沈真五论国产碳纤维产业化之路:


从“芯片之痛”联想到钱云宝的“全产业链”——国产碳纤维产业化之路的思考


最近网上充满了对“芯片之痛”的评论,当然“芯片”之痛主要是电子行业遇到的问题,但类似的核心技术还有很多,芯片的禁令只是提醒人们,不要把它作为个例,也不是只有军品可以成为禁运的对象,即使民用的核心技术照样可以不遵守市场经济的规矩和不用国际贸易法则来解决。因为中国是个正在崛起的大国,在经济发展过程中必然会与美国发生利益冲突,不要总是用意识形态说事(就像有些人在网上说的),在关系到两国利益的时候,这样的禁令随时都会发生,即使中企中距中规也可以找出惩罚你的理由。


碳纤维是从“芯片”事件出来后网上议论纷纷的国家另一关键核心材料,因此如何实现碳纤维国产化(包括军用和民用)也是大家议论的重点。


本人在碳纤维应用领域耕耘了近40年,在碳纤维企业从事国产碳纤维工业领域应用也已有7年,下面想结合东丽碳纤维产业化之路来谈谈对国产碳纤维产业化之路的一些体会。


碳纤维在军事装备方面的应用举世皆知,同样碳纤维及其在工业领域(包括民航飞机、轨交和汽车等)的潜在应用也一定会是关键的核心技术,未来上万吨的用量不是痴人做梦,当然在国内将是10-20年以后的事,但在此期间国内碳纤维企业如何作为非常关键?如果无所作为,上万吨的应用将是国外碳纤维厂商的天下,类似的“芯片”之痛将会重现;如果为得到这一市场,国内碳纤维企业将如何度过至少10年的煎熬?


碳纤维的产业化之路的艰难和漫长也是所有类似核心技术实现产业化的共同问题,国家可以为两弹一星及大飞机投入上千亿,但如何制定针对核心技术实现产业化过程所需巨量投入的相应政策需要有识之士共献良策。


关于碳纤维的产业化离不开对国际上碳纤维霸主东丽产业化之路的了解。


东丽的碳纤维之路起步于1970年,东丽实现碳纤维量产(十吨级)起步于开发出了钓鱼竿和高尔夫球杆的批量生产, 1975年实现碳纤维在波音737次承力结构的应用则推动了东丽千吨级的量产,上世纪90年代起波音787机体结构50%重量使用碳纤维则推动东丽万吨级的量产,同时真正实现了由长期亏损到稳定盈利的转变,面对汽车领域轻量化的需求东丽更是通过收购Zoltek的举动朝着10万吨级的目标挺进。东丽的产业化之路始终与波音公司紧密捆绑在一起,碳纤维的发展离不开波音飞机复合材料结构的批量化生产。在此前几十年东丽的发展过程看出,所谓的第一代碳纤维T300的指标是适应波音的需求提出和实现的,第二代碳纤维T800的指标是波音提出由东丽实现的,第三代T1100的指标也是由波音提出,由东丽实现的。大家在网上纷纷称赞的T1000,东丽于1986年就已研发,但至今很少有人应用,这说明材料部门脱离应用开发的产品并没有产业化前景。还需要关注的是东丽不仅开发出满足工业部门需求的碳纤维,同时也开发出了适用于波音次承力构件用的环氧树脂5208和适用于波音主承力构件的增韧环氧树脂3901和相应的预浸料,同时东丽公司有数百名技术人员常驻波音公司,配合波音公司实现碳纤维的应用,协助波音开发出了制造飞机碳纤维复合材料部件的设计方法和生产工艺。从东丽碳纤维的产业化之路可以发现:


1上世纪70年代东丽的T300性能不如目前的国产碳纤维,但即使如此用它制造的飞机部件照样安全使用了几十年,而目前东丽T300优于目前国产同类碳纤维的原因是通过长期的使用和生产中,不断改进性能和不断降低成本的结果。


2 东丽能实现碳纤维产业化,不仅是根据下游客户波音的需求开发出所需性能的碳纤维,同时还提供性能与之匹配的(包括成本和工艺性)的树脂及其预浸料,并在波音长期驻有几百名技术人员协同波音攻关,开发出用其制造部件适用的工艺,实现满足使用要求的复合材料制件的批量生产,从而通过大批量供应预浸料获得丰厚的利润。


3 东丽从开始碳纤维生产到实现稳定的盈利历经30多年,也就意味着作为东丽公司(碳纤维只是东丽集团的一小部分)的董事长有足够的承受长期亏损的财力和承受外界(包括董事会成员)压力的能力。


4东丽碳纤维的产业化之路(或稳定的盈利)是伴随着波音民机复合材料结构(机体结构重量的50%)的批量生产同时实现的


东丽碳纤维的产业化之路给了我们很重要的启示:即国产碳纤维产业化一定是伴随着工业领域复合材料制品的批量生产同时实现的。


国产碳纤维起步与东丽基本同步,一直没有注重相应产品的开发,故长期停留在少量惨谈经营的状态。上世纪70年代-80年代初,国产军机即已开始在军机上应用碳纤维复合材料,也只是试用一下,我国第一个飞机结构零件——强5进气道壁板(1977年12月28日)试飞成功,并在此基础上开始研发军机复合材料垂尾。期间由于东丽的T300-3k碳纤维始终可以很容易从非正常渠道获得(虽然对中国实行碳纤维禁运的“巴统”协议一直存在),国产碳纤维始终无人问津,所有的军机复合材料部件都均使用东丽的T300碳纤维,直至本世纪初,非正常渠道进口的T300突然从市场上“失踪”了,T300-3k市场价格飞涨至8000元/kg仍有价无市(可能与当时的国际形势有关),直接威胁到我国的武器装备生产。


在此背景下,我们才开始意识到碳纤维国产化的重要性,开始了一轮碳纤维国产化的高潮,在此轮碳纤维国产化热潮中国内涌现了几十家碳纤维企业,但突破碳纤维技术的长期耗资的属性,只有少数几家民企(都经历了大约10年的长期投入和亏损)脱颖而出,实现了军用装备碳纤维供应国产化。但此轮国产化只是解决了军用碳纤维的国产化,虽有个别碳纤维企业能依靠少量军品的高价销售实现盈利得以良性运行,但并没有真正解决整个国产碳纤维行业产业化的问题(军用碳纤维用量仅百吨级),与实现稳定盈利长期生存的目标相距甚远。


因此仍必须探讨国产碳纤维的产业化之路,而东丽的产业化之路应是值得借鉴的模式,但与此同时必须意识到国产碳纤维企业与东丽所处环境的差异:


1.东丽在1970年代与当时其他碳纤维企业处于同样的水平,而国内碳纤维企业目前面临着东丽、赫氏、东邦、三菱等羽翼丰满实力强劲的对手。不像当时波音,是从技术实力相差不大的供应商中选取最优,而目前下游用户可以首选实力强大的国外供应商,下游工业碳纤维复合材料制品的产业化可以通过使用国外优质碳纤维来实现,在此背景下国产碳纤维企业必须意识到市场经济的规律。


2.国内碳纤维产业化之路与东丽面对的产业领域不同,东丽面对的是对轻量化有迫切需求的波音飞机结构,其对成本容忍度较高,有军机复合材料结构的研究基础,同时波音系列有多种型号,均已实现批量生产,特别是波音787的结构重量50%使用碳纤维复合材料,目前碳纤维年需求量可达万吨。国产碳纤维面对的国产大飞机主要是C919和CR929两个型号,批产尚待时日,且用量有限,即使10年后也仅千吨量级,个别企业可以此为目标,但不应是国产碳纤维期待的巨大市场。因此国产碳纤维产业化必须选择其他工业领域。


目前国内已获大量应用的其他工业领域主要是体育休闲、建筑补强领域,风电叶片和压力容器是增长较快的另外两个产业,前者已经基本饱和,后者的原材料和技术基本定型,国产碳纤维进入这些行业基本上只能与国外碳纤维企业打价格战,除非国产碳纤维在碳纤维生产技术方面有革命性突破,做到性能与价格优于国外碳纤维,才可能占领市场,而这不符合国产碳纤维的现状,也不利于国产碳纤维企业的生存。因此碳纤维复合材料实现国产碳纤维产业化必须另辟蹊径,选取尚未大量使用碳纤维,而又有可能大量使用的新的工业领域。根据中国制造2025的需求,其中最为看好的领域应当是交通运输车辆的应用,包括轨交、汽车。这些行业与民机不同,民机客户通常具有军机的基础,而这些行业对碳纤维复合材料的认识基本上为零。同时对轻量化必须使用碳纤维的迫切性远不如民机,民机是在大量使用最轻的铝的基础上讨论轻量化,而这些行业是在使用钢材的基础上讨论轻量化,除碳纤维之外有很多其他的选择。所以在借鉴东丽模式的同时要意识到国产碳纤维企业必须向下游用户提供更多全方位的技术支持,并鉴于这些领域对成本的可接受性必须对现有的复合材料技术基础进行革命性的创新。


在这样的背景下,国产碳纤维企业的出路在哪里?钱云宝先生在创建恒神公司时的“全产业链碳纤维企业”理念值得碳纤维同行借鉴,即恒神公司不仅是碳纤维生产企业,而且更是提供从碳纤维(包括织物)—中间产品(树脂和预浸料)—复合材料产品开发技术服务(包括设计分析、成型工艺与制造)一条龙服务的全产业链碳纤维企业。这样做的好处是在客户有需求但没有能力的前提下,使用本企业生产的性能略差的碳纤维来提供符合用户需求的预浸料原料,最终通过自主的设计和工艺来开发出满足用户要求可以实现批生产的复合材料产品,一旦实现复合材料制品批量化生产,可以保证本企业生产的碳纤维大量销售,在为用户实现复合材料制品产业化的同时实现本企业生产碳纤维的大规模生产和销售,同时使得本企业的碳纤维品质在生产和使用过程中不断提升。


对此恒神公司的10年实践已初步见证了这一理念的正确性,最好的例证是恒神公司与长客共同研发的国际上首个19米长全碳纤维复合材料地铁车厢。当然钱云宝的理念曾被当做唐吉坷德式的笑谈,确实它比单纯只生产碳纤维耗资要多,耗时要长,难度增加不是一点点,但确实已看到了成功的曙光,可惜钱云宝英年早逝,没有看到恒神梦的实现,但他的尝试是后人可以借鉴的宝贵财富。


恒神全产业链的理念很难复制,他毕竟只是凭借一己之力,去做国家和整个行业要做的事,只有像钱云宝这样个别人可以去做,但他的这种理念应该可以通过其他形式发扬光大,可喜的是从碳纤维界发布的各种各样信息的披露中这一理念已被越来越多的企业家接受。


总之国产碳纤维的产业化之路有下列两点值得关注:


1.不论是哪种形式,国产碳纤维企业必须具有全产业链,资金雄厚,可以以全产业链碳纤维企业与下游用户结盟的形式实现产业化,或者由下游用户牵头组成包括碳纤维、树脂、预浸料、设计分析、复合材料制件生产、生产设备等企业共同组成的紧密合作实现共赢的全产业链企业群,在实现某个工业领域复合材料产品(部件或工业产品)批量化生产的同时实现国产碳纤维产业化,使得碳纤维企业实现稳定性长期盈利。


2.必须意识到实现国产碳纤维产业化一定是需要经历至少10年漫长而耗费巨资长期亏损的事业,这只有具有长远眼光财力雄厚的企业集团才可能胜任。


“买得起的复合材料”和碳纤维“全产业链” ——再论国产碳纤维产业化之路


前几天《从“芯片之痛”联想到钱云宝的“全产业链”》获得了很多赞,对于获得多少赞我倒并不关心,倒是一些碳纤维大佬的评论和讨论是我最关心的,因为质疑和反对的声音是我最感兴趣的,因为有些是我没有把“全产业链”的理念阐述清楚,有些则是这一理念存在缺陷,需要我进一步思考和修正。这两天对徐梁华老师的专访《贵族产品不能卖白菜价》一文也引起了大家的共鸣,对此也是我近几年来思考最多的问题之一,因此也想参与讨论一下。


碳纤维因其高性能和高售价并存,一直是业界的心中之痛,它就像阳春白雪,高高奉上,但和者寥寥。碳纤维企业关注碳纤维的价格,但下游用户关心的则是其复合材料制件的价格,碳纤维企业心痛高成本的碳纤维卖了白菜价,下游用户并不关心碳纤维多贵,只关心我买的碳纤维产品合不合算。因此有必要回顾民机复合材料结构从零到目前占结构重量50%以上,超过铝成为飞机最主要的结构材料所走过的路,也许可供碳纤维从业者参考。


上世纪70年代的石油危机引发了航空业的危机,为了降低燃油消耗,结构轻量化是民机生产商的首选,飞机结构已经使用比重最小的结构材料——铝,在结构设计方面也已竭尽了最大的努力,作为唯一的出路,民机生产商把眼光瞄向了比重更小的碳纤维。出于性能优先的考虑,军机结构已开始大量使用碳纤维复合材料,但高昂的成本成了最大的拦路虎。在此背景下美国政府赞助航空公司(波音、道格拉斯(后为麦道)和洛克希德)启动了持续数十年民机使用碳纤维复合材料应用的国家计划,同样欧洲也启动了类似的计划(TANGO)。。值得关注的是所有这些计划的核心是三个词:信心(安全)、技术、成本。特别是CAI计划的关键词就是“买得起的复合材料(affordability)”。ACEE计划启动时的目标是飞机主结构机翼和机身使用碳纤维复合材料,实际执行时发现十年计划只实现了尾翼结构使用复合材料,其成本可为用户接受,所以ACEE计划的成果是所有大飞机的尾翼均使用复合材料(占结构重量约10%),使东丽公司实现千吨级的供应;经过近30年的努力才使机翼机身使用复合材料的成本为用户接受,其标志是波音787复合材料结构占机体结构的重量50%,A350占52%,从而实现东丽与赫氏实现万吨级碳纤维供应,两家公司的碳纤维实现稳定性盈利。图1是几个主要的研究计划和取得的成果。


可以发现在民机复合材料结构实现产业化应用过程中,其实碳纤维的价格并没有多少变化,应用T800后,价格其实更贵了,但并没有影响碳纤维复合材料价格的降低。波音公司的复合材料专家给出了飞机复合材料制品成本的构成(见图2),其实材料在其中只占8-20%,工艺制造和装配占了80%以上。如果从用户最关心的全寿命成本(采购成本+使用成本+维护成本)来看,材料成本占比更少。Zoltek公司的专家也给出了相同的结论,认为在汽车复合材料制件中材料成本只占20%。现在专家们只讨论如何降低碳纤维成本,当然在工业领域应用中碳纤维成本需要大幅度降低,碳纤维企业关注低成本碳纤维无可非议,但这并不能从根本上解决产业化的问题,如果不下大功夫解决复合材料制品成本问题是没有意义的。1996年由美国先进民用飞机新材料专业委员会编制的《下一代民用运输机用的新材料》中指出:“虽然复合材料的市场销量增长缓慢往往归因为原材料的高成本,但材料成本实际上仅占复合材料构件总成本的8%~10%。事实上工艺制造成本是总成本中最高的单项成本。过去性能因素推动着复合材料在航空航天中的应用研究,但近年来成本则起到了更大的作用。这样,开发下一代民用运输机工艺的一个基本准则是低成本制造的可能性。委员会相信,在可预见的将来,发展趋势是不断开发低成本的制造工艺。”


图1 民机复合材料结构产业化之路


图2 传统航空复合材料制品的成本构成


当然复合材料制品中碳纤维成本的占比取决于碳纤维复合材料产品,并不是所有的复合材料制品都像航空复合材料产品的占比,在前面一片文章中已经指出,民机应用在我国近期内不可能有万吨的需求,不需要众多碳纤维企业的参与,所以本文要讨论的国产碳纤维产业化之路上,所有的碳纤维企业必须考虑的重点是碳纤维应用到何处。记得钱云宝先生对营销人员经常教导的:“要记得两个可替代性,即碳纤维的可替代性和成本的可替代性。”要清楚地回答:用户为什么要用碳纤维;用碳纤维为用户带来什么好处。因此要回答这个问题必须清楚地知道碳纤维与其他材料相比的优势是什么。


碳纤维复合材料相比传统材料最大的优势是其在具有所需强度的前提下具有最高的比模量(弹性模量与密度之比)(如表1所示),而不是大家所说的比强度高。其实结构设计师都清楚,首先是用材料的弹性模量进行结构设计,在满足结构变形要求的前提下确定设计方案,然后进行强度校核,对薄弱环节局部补强,结构减重首先选用弹性模量最高的材料,这就是碳纤维分代的依据,所以T300(模量230GPa)是第一代,T800(模量294GPa)是第二代,T1100(模量324GPa)是第三代,T700和T1000的高强度只是T300和T800采用低成本干喷湿纺工艺的产物,并不是根据用户的需求研发的新品种,在多数情况下碳纤维的强度是有富裕的。正因为碳纤维的这一优势成了结构轻量化最青睐的材料,因此碳纤维的应用对象主要是既有变形的约束,同时需要减重的结构,二者缺一不可。因此碳纤维应用的下一工业领域一定是有迫切轻量化需求的交通运输车辆结构。


碳纤维的复合材料的另一优势是可设计性和适用于结构整体化成型,前者可按其受力方向发挥其模量高的特性(各向同性材料无法实现),同时可通过材料设计(与不同树脂及其他成分组合)实现结构-功能一体化,同样的材料重量可同时实现结构性能和所需的功能(减振降噪等);后者可大大减少结构件的装配成本(减少紧固件和装配工作量)。综上所述,碳纤维复合材料的应用对象除上述的同时具有变形与减重要求的结构外,还应是那些原金属结构件成本中材料成本占比较小的结构,这样才有可能通过降低制造成本来容忍较高的材料成本。


碳纤维的优势还包括其具有优越的抗疲劳和抗腐蚀性,对那些饱受疲劳与腐蚀威胁带来高昂维护成本与更换率高的结构件,材料成本高也是可接受的选项。


当前已获得大量应用的领域(除航空应用外),如体育休闲、风电叶片、建筑补强、压力容器等,其复合材料产品的设计与工艺基本定型(设计与工艺主动权基本上掌握在国外厂家手中),材料与制造成本的分配基本固化,碳纤维企业生产的碳纤维是否被用户接受只能依靠提高国产碳纤维的性能和降低生产成本,别无他路。但面对尚未充分开发的交通运输车辆应用,目前的现状是交通运输车辆领域的用户对复合材料不熟悉,缺乏动力和技术支持,进展迟缓,如果国产碳纤维企业无所作为,只醉心于对碳纤维制造工艺的改进和降成本,一种可能是迟迟无法实现复合材料结构的产业化生产,则国产碳纤维产业化也迟迟无法实现;另一种可能是由国外首先实现产业化,国产碳纤维仍然会像目前已大量应用碳纤维的工业领域一样,再一次只能进行价格竞争。


CMH-17-3G《复合材料手册》中指出:“并行工程,由设计师、应力分析、材料和工艺、制造、质量控制、后勤保障工程师(可靠性、维护性和生存性)以及成本估算师组成的团队联合、并行地研制新产品或新系统,现已成为公认的设计方法。”碳纤维复合材料结构开发特点和国内下游工业领域用户的现状逼迫国产碳纤维在开发碳纤维应用新领域方面必须有所作为,也就是必须考虑碳纤维的全产业链,这不是钱云宝个人的痴心妄想,也不是唐吉坷德式的笑谈,而是破解国产碳纤维产业化的一种无奈之举。当然钱云宝已经走了,可能这将是前无古人后无来者的一种尝试。但希望国家和有影响力的专家正视这一现实,在实现国产碳纤维产业化路上,提出破解的良策。



交通运输领域复合材料结构低成本之路 ——三论国产碳纤维产业化


最近有感而发写了了两篇小文,总结一下就是两件事:首先国产碳纤维产业必须寄托于下游产业复合材料产品的产业化;其次下游产品的产业化取决于是否可以提供“买得起的复合材料制品”。因此问题就归结为如何才能提供“买得起的复合材料”。


关于复合材料产品,在航空复合材料界一直流行这样几句话:“设计是主导,材料是基础,制造是关键。”民机复合材料制件在实现产业化过程中,美国NASA赞助的诸多研发计划中始终贯穿了这样的指导思想:“信心(安全性)、技术、成本”,即为实现民机复合材料产业化必须解决上述三个问题。由于碳纤维复合材料拥有所有结构材料中最高的比刚度,是实现结构轻量化的首选材料,主要用于对结构轻量化有迫切需求的产业,而这些结构对安全性有极高的要求,由于是新材料,用户对其安全性的疑虑是可以理解的;技术是在满足安全性的前提下保证设计和制造复合材料制件的必要条件;然后才进一步考虑如何实现销售,销售的关键是使用户认同其全寿命成本(采购成本+使用成本+维护成本)优于其他结构用材料的制品,所以信心(安全性)、技术和成本是实现复合材料制件产业化的三步曲。


纵观碳纤维复合材料得到大量应用的工业领域:体育休闲、建筑补强、航空航天,以及目前增长迅速的风电叶片和压力容器,都是国外碳纤维的一统天下,为什么?因为所有这些领域的复合材料产品都是首先由国外厂家设计和制造出来,然后利用中国的廉价劳动力,在中国设厂或转让技术生产。国产碳纤维进入这些领域的首要条件必须要求性能相当,价格低廉,在把性能做到与国外基本相当后还必须打价格战。因此国产碳纤维进入这些市场,只能适应由开发商指定的游戏规则,生产出符合产品规定材料规范的碳纤维,与国外厂商打价格战,要求国家强行制订使用国产碳纤维的法令不符合市场经济规律。在此背景下,碳纤维厂商只能立足于自身改进工艺,提高性能,降低成本,就像碳纤维界热烈讨论的那样。但要实现这一目标,同样必须立足于经历长期高耗能低性能的生产过程,才有可能实现。在国产碳纤维性能略低于国外碳纤维的当下,只能进入低端复合材料市场,当然只能卖“白菜”价了。说到底,因为我们不掌握复合材料制品的核心技术,只能遵从国外厂商制订的材料规范,国产碳纤维没有任何发言权。在这种情况下,国产碳纤维厂商的唯一出路就是按照国外的碳纤维材料规范,生产符合其要求的产品,并尽可能降低成本。如何打破僵局,使用户接受国产碳纤维来生产批量化的复合材料制品呢?那就要主动掌握碳纤维复合材料制品的开发权,按照国产碳纤维实际达到的性能和用户对产品的性能要求,设计和制造出全寿命成本优于其他结构材料的复合材料制件。


回顾上世纪70年代波音在开发民机复合材料结构时东丽T300的技术状态,从波音公司T300的材料规范可以发现,当年东丽的T300并不优于目前国内的同级产品,但波音就用那样的碳纤维开发出了波音系列的复合材料尾翼,不仅全寿命成本优于金属结构,也安全运行了30年,东丽公司可以在波音公司大量使用的基础上,源源不断地进行生产,并在长期生产和对用户反馈问题的响应基础上,不断提高性能和降低生产成本,达到了目前的高性能和低成本。国产碳纤维如何学习东丽成长的道路呢?只有紧紧伴随坚定走碳纤维复合材料产品产业化之路的用户,在产品产业化的过程中实现国产碳纤维的产业化,这样的用户只能是目前还没有产业化产品的新兴行业用户。


当前碳纤维产业正在如火如荼地准备进入以轨交和汽车为代表的交通运输领域,的确交通运输车辆的轻量化是该行业迫切需要解决的关键议题,碳纤维的应用应是最佳的解决方案,国外特别是宝马已为此开展了十余年的探索,2013年宝马i3的推出被誉为汽车复合材料的元年。与民机复合材料应用实现产业化类似,做出“买得起的复合材料”需走的路异常艰辛,只要坚持不懈,总会实现的,届时必将迎来碳纤维需求的大爆发。国产碳纤维企业在实现交通运输车辆复合材料结构产业化的过程中,必须勇于参与成为规则的制定者,才能成为真正的赢家,否则届时又会沦为国外碳纤维的替代者,去打价格战。


目前与碳纤维已得到大量应用的其他工业领域(体育休闲、建筑补强、风电叶片、压力容器等)产品不同,交通运输车辆结构形式和受力要复杂得多,与飞机结构类似,因此其设计和制造必须依托民机复合材料产业化积累的技术基础;但还要认识到交通运输车辆复合材料与民机复合材料又有很大的差别:


(1) 民机在开始使用复合材料时很多技术人员具有军机应用的经验,交通运输部门的技术人员对复合材料的认识和技术基础基本为零;


(2) 民机结构轻量化是在使用最轻的铝材基础上进行轻量化,碳纤维是唯一选择;而交通运输结构是在主体结构采用钢材的基础上进行轻量化,对很多人来说,碳纤维的应用往往不是第一选择;


(3) 军机复合材料可接受的价格是10000~20000元/kg,民机是6000~8000元/kg,轨交车辆是800~1500元/kg,汽车是200~500元/kg,具体价格取决于制件的复杂程度(即技术附加值)。


所以对交通运输行业解决信心(安全性)、技术和成本三大难题比民机开始应用时困难得多,交通运输车辆复合材料结构没有现成成功的经验可以模仿,既要继承民机复合材料技术基础,又要在此基础上根据行业的特点大胆创新,走出中国自己的路,才有国产碳纤维光明的未来。碳纤维产业的从业者必须付出更多的努力,才有可能使用户有更大的信心,坚持不懈走完产业化之路。


实现复合材料产品的产业化(即生产出“买得起的复合材料”)必须牢牢掌握产品的开发权,就要遵循本文开头提到的“设计是主导,材料是基础,制造是关键”。产品的源头是设计,设计时可以根据用户的要求提出对材料的要求,在碳纤维供应商提供产品的基础上可以提出改进要求,若供应商经过努力与设计的要求仍有差距时,可以通过设计手段来弥补原材料的性能不足实现用户对产品的要求;当然复合材料产品的设计团队还必须与制造团队密切配合,使产品的设计符合复合材料的制造特点,以便尽可能实现低成本制造;同时原材料供应商在此期间必须听取制造团队对原材料的改进要求,努力提供满足低成本制造要求的原材料。只要这三个团队密切配合,就可以用国产碳纤维生产出满足用户要求的复合材料制品,在实现复合材料制品批量化销售的基础上,实现碳纤维源源不断的生产和销售。


对复合材料产品安全性的疑虑,即信心,通常是通过满足结构完整性要求来提供的。飞机的结构完整性定义是“影响飞机安全使用和成本费用的机体结构的强度、刚度、损伤容限、耐久性和功能的总称。”这一定义同样适用于交通运输结构。结构完整性的要求由行业的设计规范体现,目前交通运输行业的设计规范完全基于金属结构的使用经验,采用复合材料后很多条款无法执行,必须增添针对复合材料的相关内容。民机设计规范FAR25部(中国是CCAR25部)适用于所有的结构材料,咨询通报AC20-107“复合材料结构”是根据复合材料在飞机结构40年应用的经验教训总结,这些补充条款和对条款符合性的实践经验基本上适用于交通运输行业。对这些补充条款的解读可以发现,凡是不牵扯破坏机理的内容,一般也适用于复合材料;凡涉及破坏的条款则必须重新定义,例如有关静强度(包括连接强度)、疲劳寿命、损伤容限的条款。冲击损伤是复合材料结构的特殊问题,必须给出有关的设计要求和处理方法。安全性的另一关键是如何确定设计用材料性能,复合材料的特点是结构与材料同时形成、材料的可设计性,因此设计用性能的确定不同于金属,分为材料许用值和设计值,美国CMH-17《复合材料手册》第一卷《结构材料性能表征》就是集40多年有关复合材料性能表征的经验教训总结,它适用于所有高性能复合材料设计用性能的选取和确定。总之可以借鉴飞机结构的设计规范并结合行业特点来制订适用于交通运输行业的补充规范。


复合材料技术包括设计与制造等,飞机复合材料结构的设计和制造技术基本适用于交通运输车辆结构,但后者必须根据自身的特点进行修正和发展。例如飞机结构普遍采用的连接方法和成型工艺在交通运输车辆上直接应用是有疑问的;又如全碳纤维结构适用于减重要求高的飞机结构,对工业领域应用应提倡把适当的材料用在适当的部位,从而不同材料结构部件的设计优化和连接成为交通运输车辆复合材料结构设计的新课题;同样飞机结构普遍采用热压罐工艺,但交通运输车辆结构更多采用快速固化高效的液体成型和OOA成型,甚至模压成型等,通过创新开发出适用于交通运输车辆的复合材料成型技术是交通运输行业最为迫切的研究方向和实现产业化的关键。


在交通运输车辆中开发复合材料结构必须遵循循序渐进的方法,首先应开发对结构安全性影响较小的非承力结构取得经验和对其安全使用建立信心后,逐渐过渡到次承力部件,通过低成本次承力部件的开发和批量生产,将碳纤维复合材料制件实现产业化生产,再最后过渡到开发碳纤维复合材料的主承力结构,实现碳纤维复合材料制件的产业化,同时实现国产碳纤维的产业化供应。当然在选取适用的结构时,必须是那些形状复杂,金属难于制造的结构件,同时在开发时切忌不要进行一对一的研制,要充分发挥复合材料可以实现结构整体化和结构-功能一体化的优势。当然开发出“买得起”的交通运输车辆复合材料制件只是开始,真正实现“买得起”还必须建立数字化、自动化的智能生产线等大量任务。当前第一阶段的应用已取得了很大的成绩,正在进入第二阶段,但是在“买得起”这一环节上进展不大,因此当前的首要任务是如何从设计、材料和制造入手,实现全寿命成本优于金属结构,做出被用户接受的交通运输车辆复合材料产品。


总之,交通运输车辆复合材料制品的产业化以及国产碳纤维的产业化道路是曲折的,前途是光明的,必须依靠交通运输行业与碳纤维复合材料界的共同努力才能实现,其中碳纤维产业的同人必须付出更多的心血,下游用户对碳纤维的认识还没有到非用不可的程度,毕竟碳纤维企业更为关注它的未来。



诠释碳纤维“全产业链” ——四论国产碳纤维产业化之路


在2018SAMPE年会上与多位同行谈论“全产业链”,发现很多人误解了钱云宝先生的“全产业链”,认为钱云宝先生要包打天下,把下游产品通吃,也因此影响了对“全产业链”含义的正确对待。特别是有些碳纤维企业的大佬认为“全产业链”需要花费巨资,作为碳纤维企业,做好碳纤维已经无暇自顾,遑论全产业链了。注意,钱云宝的全产业链含义:建立“碳纤维-织物-树脂-预浸料-设计与产品开发服务”的完整产业链 ,落脚点是设计与产品开发服务,通过所开发产品的大批量生产(谁负责批量化生产根据具体情况再定)实现恒神原材料的大批量销售,首先不是以恒神大批量生产复合材料制件为目的。


还是回到东丽发展的初期,东丽开发碳纤维高尔夫球杆的过程,就是由设计师和工艺师(是否是东丽雇员并不重要),按照东丽碳纤维及其预浸料的性能,开发出制造高尔夫球杆的工艺,生产出优于金属球杆的产品,使之成为市场上的畅销产品,实现了东丽碳纤维的第一桶金,70年代初东丽的碳纤维性能和质量真有那么好吗?


林刚在“2017全球碳纤维复合材料市场报告”中给出国内大陆消耗碳纤维总量为17500吨,其中体育休闲、风电叶片和建筑补强用量10860吨,占比62%,其中的高端应用,包括目前急速增长的液氢燃料压力容器,所用碳纤维主体是东丽和台塑的产品,而国产(台塑除外)碳纤维虽供应了7400吨,绝大部分以低价(低于成本价)用于低端应用,即使少量在工业领域的高端应用,也只有微薄的利润。究其原因,国内的工业领域高端应用产品均采用国外(包括台湾地区)的材料规范和制造工艺,原料来源和价格和产品价格均掌握在国外厂商手中,国外复合材料厂商掌握着产品的开发权(核心技术)和定价权,国内复合材料厂商只是来料加工,凭借低廉的劳动力成本赚取辛苦费。国产碳纤维的性能与质量必须与国外碳纤维等同,价格低于国外碳纤维才有可能用于这些高端产品,也就是说只能从加工商那点微薄的利润中分得一杯羹,这就是国产碳纤维卖“白菜价”的原因。


最近一则“让总理沉重凝视的丰田新能源牛车竟然这么多地方用到碳纤维”的消息在网上疯传,丰田汽车放言将以中国对新能源汽车的要求进行生产,并在中国市场大量供应,有网友问道,这是好事还是坏事,我的答案对国产碳纤维企业绝对是坏事,因为丰田新能源汽车在国内市场大量销售之时,国产碳纤维将依然卖“白菜价”,因为丰田掌握着新能源汽车的开发权和定价权,即使在国内大量生产,其中的碳纤维制品一定是按其开发所用碳纤维的性能设计,并由其开发的制造工艺生产的,国产碳纤维的性能与质量必须与开发所用国外碳纤维等同,价格低于国外碳纤维才有可能使用。


因此国产碳纤维的出路一定要掌握复合材料产品的开发权,产品开发的思路是“设计是主导,材料是基础,制造是关键”,空有材料,没有人用它设计产品,材料的性能一点价值都没有,光有材料,没有适用的低成本制造方法也不可能生产出被市场接受的产品;如果掌握了产品开发权,材料性能略差一些又有何妨。用户只关心复合材料产品是否满足我的要求,只关心产品价格是否可以接受,根本不关心原材料性能是否达标(所谓的达标是设计师规定的),原材料如何昂贵。因此在碳纤维大规模应用的下一个领域:交通运输车辆,国产碳纤维能否实现产业化的关键是能否掌握下一代复合材产品的开发权和定价权,即是否能用国产碳纤维和自主开发的创新制造工艺,自主开发出被市场接受的碳纤维复合材料交通运输车辆。


对于复合材料结构交通运输车辆的开发思路,我同意珠海银隆新能源乘用车研究院刘智慧院长的看法,首先要做的事并不是开发各种复合材料车辆部件,而是首先研究车辆结构的构成。与飞机结构不同,飞机结构可以使用全碳纤维结构部件,由于对成本可接受的程度不同,交通运输车辆不宜采用全碳纤维结构,宝马的i3系列探索的经验教训值得我们借鉴,即要将不同的结构材料用到该用的地方,因此首要的事情一定是分析各种不同材料的应用部位及其组合方式,确定碳纤维复合材料适用的部位及不同材料结构的连接方式。当然在开始阶段研发全碳纤维车辆结构可能是无法绕过的阶段,只有研发并试用全碳纤维复合材料车辆才可能确定碳纤维复合材料的适用方式,然后才是针对那些部位进行低成本攻关。在此需要重申1996年由美国科学院和工程院下属的先进民用飞机新材料专业委员会编制的《下一代民用运输机用的新材料》中指出要点:“虽然复合材料的市场销量增长缓慢往往归因为原材料的高成本,但材料成本实际上仅占复合材料构件总成本的8%~10%。事实上工艺制造成本是总成本中最高的单项成本。过去性能因素推动着复合材料在航空航天中的应用研究,但近年来成本则起到了更大的作用。这样,开发下一代民用运输机工艺的一个基本准则是低成本制造的可能性。委员会相信,在可预见的将来,发展趋势是不断开发低成本的制造工艺。”低成本的主要途径一定是开发出创新,且适用于这一行业的制造工艺和方法。大家可以回顾迄今为止所有的复合材料制造工艺,哪一项是由国内开发的?如果没有制造工艺的创新,交通运输车辆就不可能复合材料化。风电叶片使用碳纤维始终没有大的突破,近年来碳纤维梁得到了大量应用,其主要原因是VESTAS开发出了梁缘和梁腹板的拉挤工艺,大大降低了成本,但VESTAS获得了新工艺带来的丰厚利润,中国的制造商只是喝了点汤,国产碳纤维企业则只能去拼价格优势。



结论就是只有你掌握了复合材料产品的开发权(设计和制造工艺),才有可能用性能与质量略低于国外产品的国产碳纤维,生产出被用户接受的复合材料给结构交通运输车辆,因此国内碳纤维企业必须形成碳纤维复合材料的“全产业链”,国产碳纤维才有产业化的前景。当然“全产业链”可以是与下游用户紧密结合的“全产业链”的碳纤维企业,也可以是由下游用户牵头的碳纤维复合材料全产业链企业联盟。


其实“全产业链”的概念可大可小,大到由国家或下游产品的大型企业牵头的“全产业链”,小到碳纤维企业的“全产业链”(例如恒神)。大产业链可以开发全局性的轨道交通车辆或汽车,后者可以只开发一些小型复合材料部件,通过一个一个碳纤维复合材料产品的开发,把自产的碳纤维变成批量化产品销售,而不会以“白菜价”出售碳纤维。恒神近年来已陆续开发出一些可以被用户接受的复合材料制品,当然还不多,但已开始尝到甜头。积跬步行千里,碳纤维企业只有通过持续不断的生产和使用,才能将自身的碳纤维产品性能与质量不断提高。


SAMPE大陆总会从去年起开始组织电池盒的DIY大赛,其宗旨是在追求轻量化的同时考量低成本,同时对在设计、选材和制造工艺方面有奇思妙想的作品予以奖励,其记分规则是在满足载荷与变形要求的前提下重量最轻者计60分,成本最低者(由专家按批量化生产成本来评定)计30分,有奇思妙想者计5分,外观即5分。比赛的目的就是希望碳纤维复合材料从业者(包括学生和企业的技术人员)在开发阶段有成本意识,同时鼓励从业者突破现有的思维方式,提出创新的设计、选材和制造方式,从而为国产碳纤维产业化做点力所能及的小事。比赛只举行了两届,参赛人员还没有完全接受这一理念,但已有了可喜的进展,例如今年的第一名就不是重量最轻的参赛队。


从泰先和中恒的破产谈碳纤维“全产业链” ——五论国产碳纤维产业化之路


前几天严兵的“从浙江泰先、沈阳中恒的破产案,谈碳纤维产业的发展”分析了这两家公司因经营不善导致破产,特别是指出碳纤维的生产成本高于销售成本是其主要原因,并指出国内还有很多僵尸碳纤维企业即将步入破产的行列。我认为这篇小文阐述了事实,但对碳纤维企业的生存问题没有进行深入的剖析。


1、碳纤维生产企业分类及其产品应用对象和需求量


在探讨泰先和中恒破产原因之前,本文需要先澄清一些基本概念。


大家在文中经常谈及碳纤维企业,其实碳纤维企业包括两类,一类是真正的碳纤维生产企业,多数则是碳纤维复合材料制品生产企业。这两类企业的生存环境迥然不同,前者需要巨额投资,且影响参数众多,运行参数随所用设备和原材料而变,无可借鉴的经验,往往运行数年,仍无法生产出满足用户要求的产品,正是这类企业面临着破产的危机。后者相对而言投资较少,通常可以在较短的时间内即可生产出满足用户要求的复合材料制品,达到收支平衡,进而盈利。


其次对国内的碳纤维生产厂家生产,按所所采用的技术路线可把现有的生产线分为三类,虽然对碳纤维专家,这是基本常识,但对多数碳纤维复合材料界的业内人士,并不一定很清楚。这三类技术路线所建立的生产线各生产不同的产品,用于不同的工业领域,互相间不可能兼顾,如表1所示。


表1国内碳纤维生产线类型与对应的产品



注:

T300级指拉伸模量为230~264GPa的湿喷湿纺标模高强碳纤维;

T800级指拉伸模量为270~315GPa的湿喷湿纺中模高强碳纤维;

T700S级指拉伸模量为230~264GPa的干喷湿纺标模高强碳纤维;

T800S级指拉伸模量为270~315GPa的干喷湿纺中模高强碳纤维。


其中第I类是从上世纪70年代起多数国内碳纤维生产厂家采用的生产技术,也是国内生产碳纤维最多的品种,同时也是民品市场销售和使用的主要品种。但生产的碳纤维质量和成本始终无法达到东丽的水平,也是被迫以“白菜价”销售的主要碳纤维品种。这里面有多方面的原因,但一直以低于成本价销售,致使无法长期稳定生产是主要原因之一。持续这种状态,仅从技术上攻关恐怕很难改变这种状态。第II类是最近比较时髦的技术路线,中复神鹰经持续不断的努力,攻克了干喷湿纺的技术关键,基本上达到了东丽的水平,使其产品可以与东丽T700S并驾齐驱,当然同样面临着与东丽T700S的价格战。第III类湿喷湿纺大丝束技术在国际上只有少数企业掌握,东丽虽经多年开发,均未攻克,最后转向收购ZOLTEK。国内精功已成功开发了这一技术,并生产出了产品,但性能和稳定性与国外产品有差距,由于其主要应用对象——风电叶片梁板的设计与选材开发权掌握在VESTAS手里,从而无法得到应用。


2、国产碳纤维为什么只能卖“白菜价”


作者与国产碳纤维的销售人员对民用碳纤维的价格形成进行了探讨,民用市场主要使用T300-12k级与T700-12k级碳纤维(占比高于90%),而其中性价比最高的产品是东丽的干法T700S-12k,长期售价为200元/kg,所以其他产品的售价只能参照T700S来定位自身的价格,其他T700S-12k级碳纤维的售价为140元/kg,T300-12k级碳纤维长期以来是台丽的天下,它也只能参照T700S-12k的价格定为110元/kg,只有微利或更可能是亏本销售,当然其他国产T300-12k级碳纤维就只能以100元/kg的“白菜价”销售(今年随着国外碳纤维价格的调整,普遍售价有所提高);而目前国产碳纤维企业的生产成本普遍高于销售价,国内碳纤维厂家为提高质量和降低成本,多少年来一直坚持不懈地进行攻关一直进展不大,而且近期恐怕很难突破。照此逻辑如果没有其他办法,所有的国产碳纤维企业均会步泰先与中恒的后尘相继破产。


3、碳纤维生产线分类和碳纤维在不同领域应用的种类、价格与需求量


参照林刚先生的“2017年全球碳纤维复合材料市场报告”的数据和个人对市场的了解,表2给出了不同工业领域使用的碳纤维品种、每公斤参考价格及目前与5年后估计的需求量。表3给出了不同工业领域每公斤碳纤维、预浸料和制品的参考价格。


表2给出了碳纤维在不同工业领域的应用都有不同程度的增长空间,当然目前除军机和部分民用低端产品使用国产碳纤维外,绝大部分都是国外碳纤维厂商和台丽的天下,VISTAS的风电产品在大规模增长,其碳纤维复合材料梁板生产基本上落入了国内厂商手中,包括澳盛和光威获得了很多大的订单,这对国内碳纤维复合材料制品厂家是利好的消息,但基本上和国产碳纤维生产厂家无关。



表2 不同工业领域需求的碳纤维品种、价格与需求量



4、碳纤维企业的出路


鉴于目前国内碳纤维企业生产碳纤维的成本普遍都高于140元/kg,不亏本经营的唯一出路是成为航空航天行业的供应商,这也是本世纪初众多投资商投资碳纤维企业的初衷。由于成为航空航天产品供应商的门槛、需求量的限制以及进行型号鉴定的机遇,只有少数(2~3家)企业有幸进入了供应商的行列。对于后起的碳纤维生产企业已经失去了这一机会,这些企业将何去何从是本文讨论的重点。从表3列出的碳纤维、预浸料及制品的价格来看,有3条出路:


1) 对碳纤维进一步加工,以织物与预浸料出售,提高其价值,这也是像台丽这样的企业所走的道路。这条道路其实也很艰辛,台丽的产品性能与价格基本上是业界的标杆,并已占据了现有的国内市场,要想从中分一杯羹,只能打价格战。


2) 制成制品,提高其价值。对于目前消耗一万多吨的国内民品市场,已经有众多的碳纤维复合材料制品生产企业,碳纤维生产企业用性能逊于国外的纤维采用类同的设计与制造工艺生产出的制品与它们竞争,只能是以卵击石。钱云宝先生经常说:“大家都能做的我不做”,大概就是这个道理。


3) 开辟新的碳纤维复合材料应用领域,风电叶片是目前增长最快的应用领域,由于梁板拉挤成型的出现,碳纤维用量急剧增加,但目前这一技术是由VESTAS采用台丽的湿法大丝束碳纤维(III类生产线)开发的,而且产品附加值比较低(原材料成本占比近50%)其他碳纤维企业如果要进入这一领域,只能购买台丽或其他国外的碳纤维进行加工,结果碳纤维用量的增加基本上与国产碳纤维无关,也就与国产碳纤维产业化无关。据说有人正在利用国产湿法大丝束碳纤维研发风电叶片用梁板,如果研发成功,确实是国产碳纤维产业化的一个机会。


4) 对国内碳纤维生产企业最后的机会只能是尚未出现定型产品,但未来可能会大量使用碳纤维的工业领域。表2中列出了压力容器(包括氢燃料储气罐)、轨交和汽车领域以及其他有轻量化需求的应用领域,这些领域的应用前景已经明朗,由于成本和其他一些因素,尚未出现被市场接受的“买得起复合材料产品”。


国外对这些领域正在进行攻关,国内碳纤维企业如何参与?指望国外用户采用国产碳纤维进行攻关只能是痴心妄想,一旦国外攻关成功(就像VESTAS在风电叶片领域的攻关),这些领域的碳纤维复合材料制品又将是国外碳纤维的天下,国内碳纤维复合材料制品生产厂商再一次会成为这些领域碳纤维复合材料制品的加工商,我们还会欢呼“碳纤维的春天到了”。一旦有什么风吹草动,国外把碳纤维供应掐断,会不会出现类似“芯片之痛”的“碳纤维之痛”呢?我们的大飞机、轨交车辆、新能源汽车等等用什么来生产呢?


表3 不同工业领域碳纤维(2017年行情现价格略有上调)、预浸料和制品的单价


单位:元/kg


5、国产碳纤维不能用于制造高端产品吗?


碳纤维生产企业的老总说:我们的精力必须且只能关注如何提高碳纤维的质量和降低生产成本,以便使国产碳纤维在性能和生产成本方面优于国外碳纤维,能成功将它们替代,愿望是好的,确实是努力方向,但现实是我们能等到那一天吗?国内众多碳纤维企业已作出了多年努力,虽然有少数企业可以把T300-3k和6k级碳纤维的性能做到基本满足军机的要求,实现批量化生产,但T300-12k级碳纤维始终没有达到台丽的水平,更何况东丽的水平。可见碳纤维的生产技术是如此复杂,即使实现了,国产碳纤维也只能与国外碳纤维打价格战,结果将是苦涩的。国产碳纤维得不到高端应用,只能长期亏本生产和销售,这样的状态是否能实现碳纤维生产企业老总的预期呢?


如上所述,国产碳纤维实现产业化的机会只能是把“蛋糕”做大,通过扩大碳纤维的应用范围,增加碳纤维用量来实现。方向就是进入有光明前景,且尚未开发出“买得起的复合材料制品”的高端应用领域(即有迫切轻量化需求的工业领域)。目前国内外都在关注这些领域,并正在开发攻关。要知道这些用户在开发时通常都愿选用质量稳定、价格适中的国外碳纤维,国产碳纤维不在它们的考虑范围内。如果国产碳纤维生产厂家只关注修炼“提高质量和降低成本”的内功,不积极参与开发,产业化将会越来越远。国产碳纤维生产企业必须主动用自己生产的碳纤维来研发出高端应用“买得起的复合材料产品”,通这些产品的批量化生产,来实现自己生产的碳纤维的大量销售。要知道高端产品的成本构成中原材料成本通常只占20%,原材料价格略高一些在自己开发的产品中是可以接受的。只要开发出的产品被市场接受,并形成批量生产,就可以在生产和使用过程中同时实现碳纤维的质量提高和成本降低。当然这条道路异常艰难,也需要假以时日,但也只有这条路才能实现国产碳纤维的产业化。当然,在极度缺乏复合材料设计人才的当下,汇集这些人才与设备储备也是一项艰巨的工作。


很多碳纤维生产厂家都认为只有把自身的碳纤维质量提高到东丽的水平,才能应用到高端应用,从来也没有想过将现有水平的碳纤维用于开发高端产品。而恒神则打破了这一思维模式,在近年来就采用看似性能不被专家认可的、市值100元/kg的恒神碳纤维,开发出了一些价值几千元/kg被用户接受的高端轻量化制品,且通过了一系列严格的地面试验考核,即将批量生产。虽然这些制品体量不大,但证明了一点,即使性能低于国外碳纤维,价格高于国外碳纤维,同样可以设计和制造出性价比被用户接受的轻量化产品(早期东丽的碳纤维性能并不好,同样可以用于民机结构),从而可以实现恒神碳纤维的长期稳定销售。千里之行,始于硅步,大量恒神碳纤维的销售,就是依靠一个一个产品的开发,形成小规模稳定销售,积少成多,开发的产品多了,就形成了大规模的销售。用较低性能的碳纤维开发高端产品的范例是恒神与中车长客合作采用恒神生产的原材料(包括纤维、织物、自己开发的阻燃树脂等)和恒神创新的制造工艺开发出满足轨交行业设计规范(安全性)要求减重近30%的复合材料地铁车体,该车体结构已通过了严格的地面试验考核,即将上线运行。研发中采用的就是市值100元/kg的工业级恒神碳纤维。在地铁车体的开发过程中,恒神的全产业链技术团队基于丰富的航空航天应用(包括设计和制造工艺)的经验针对轨交车体的特殊行业要求,采用创新性设计与制造工艺实现的。该地铁车体虽然暂时还达不到“买得起”的水平,但通过碳纤维复合材料在地铁车体的应用实践取得了丰富的经验教训,在此基础上进一步研发,今后有可能开发出轨交领域“买得起的复合材料结构”,进而实现恒神碳纤维原材料的大量销售。


对于高端应用,为满足安全性要求对所用材料体系(包括纤维与树脂组合)要进行相当复杂的严格鉴定(通常要进行从材料到元件、组合件直至全尺寸结构件的积木式地面试验验证和在线运行考核),用户一般不会为了原材料价格的少量差异进行繁琐的等同性鉴定流程(保证性能与工艺的相容性),采用替代材料,这才是国产碳纤维生产企业需要全产业链的真谛。


碳纤维应用的高端产品的特点一定是对变形有严格要求,同时对减重也有迫切需求,特别是形状和受力复杂的杆板壳结构,这些是高端碳纤维复合材料制品的基本特点,这些产品的附加值比较高,通常原材料成本占比往往小于30%。


目前国内碳纤维生产企业已逐渐接受了钱云宝先生倡导的“全产业链”理念,很多企业也正在尝试做全产业链的碳纤维企业,但仔细了解这些企业,可以发现它们所建立的碳纤维生产线所生产的产品与其试图进入的工业领域对碳纤维的需求往往是不一致的,例如希望生产碳纤维电缆芯,却建立湿法小丝束的生产线;上游生产湿法小丝束碳纤维,下游生产湿法大丝束的风电叶片梁板;上游建设湿法大丝束生产线,下游却致力航天结构研发生产;上游生产干法小丝束,下游致力需要湿法大丝束的汽车制件;自己的下游不用上游生产的碳纤维,致使上游的碳纤维没有销路,下游产品开发所需碳纤维受人制约,这样的全产业链有何意义?


当然碳纤维生产企业在进入后端应用时,通过购买其他厂家的碳纤维生产复合材料制品来实现尽快盈利也是可以理解的,但国产碳纤维的产业化去哪了?这与“芯片之痛”遇到的现象有何区别?利用芯片的产品铺天盖地,而芯片的供应商全部来源于国外,“中兴事件”发生后国外断供,国内一片哀鸿。碳纤维复合材料企业是否也会出现类似的情景呢?


6、结论


国产碳纤维生产企业的生存之道,不能局限于修炼内功,致力于提高质量和降低成本,然后与国外碳纤维去拼价格,抢市场。必须用目前已基本能用的国产碳纤维去开拓工业领域应用的新领域,把“蛋糕”做大,在新开拓的应用市场找到国产碳纤维的生存空间,实现自己的价值,在实现价值的同时提升国产碳纤维的质量和降低成本。在寻找生存空间时,国产碳纤维企业必须发挥积极作用,不能寄希望于工业领域的新用户主动使用国产碳纤维,为此国产碳纤维企业具备上下游密切配合的全产业链是必备条件。


作者简介:



沈真,中国复合材料学会荣誉理事、SAMPE北京分会副主席、江苏恒神股份有限公司高级顾问。


主要研究领域:复合材料结构强度设计和力学性能表征技术研究。


曾在英国帝国理工学院、德国宇航研究院、意大利都灵工业大学、澳大利亚悉尼大学等国外知名院校从事复合材料力学研究工作。


在40多年的科研工作中曾长期担任国防重点预研课题的负责人,参与了迄今为止几乎所有飞机复合材料结构的研制。同时在国内外的重要刊物和学术会议上发表100多篇论文,先后主持编写了多部专著和20多项国标、国军标、航空行业标准,主持翻译了大量国外文献。同时参与编写了多部学术专著。


多年来共获国家科技进步二等奖1项、部级科技进步一、二、三等奖共18项,2001年被评为中国人民解放军总装备部1996~2000年预研先进个人,2006年获航空报国优秀贡献奖。


End

碳纤维在国际市场的应用情况分析


1. 应用现状


碳纤维很少直接应用,大多是经过深加工制成中间产物或复合材料使用,碳纤维复合材料作为结构件或功能件现已广泛应用在航空航天、工业和体育休闲用品三大领域。


碳纤维以其质轻、高强度、高模量、耐高低温和耐腐蚀等特点最早应用于航天及国防领域,如大型飞机、军用飞机、无人机及导弹、火箭、人造卫星和雷达罩等,且航空航天领域用碳纤维的性能等级相对而言是最高的。


在工业领域,碳纤维广泛应用在汽车、电缆、风能发电、压力容器、海洋产业、电子器件、工业器材和土木建筑等。


在体育休闲用品领域,高尔夫球杆和钓鱼竿最早获得应用,近年来,自行车、网球拍、羽毛球拍等体育用品也越来越多的使用碳纤维材料,一般使用T300级碳纤维就可以满足需求,但为了提升产品性能,部分部件也已开始使用T700级甚至更高性能碳纤维。


从国际市场来看,2014年全球碳纤维需求量约5.4万吨,2015年达7.4万吨,2016年8.3万吨。近8年,碳纤维需求量的复合增长率达8.9%,未来年均增长率将超过10%,2020年需求量将超过13万吨。


2015年,碳纤维的主要的下游应用是航空航天1.78万吨/24%、汽车1.11吨/15%、风电叶片1.63万吨/22%、体育休闲0.89万吨/12%,合计5.4万吨,占比73%。未来随着碳纤维复合材料成型技术的不断发展,下游应用领域的不断开拓,尤其是航空、汽车、风电叶片的强劲增长以及其带动作用,


2. 航空航天领域


碳纤维复合材料得以在航空航天工业中大规模应用,不仅因为它能够实现减轻飞行器重量、节约能源、增强巡航能力的目标,还要归功于它拥有较高的强度和耐腐蚀、抗疲劳等理化特性。


2015年航空航天领域对碳纤维的需求量达到1.78万吨,其中仅商用飞机的需求即占68%的比例,是目前航空工业中对碳纤维需求最大的市场。结合全球碳纤维发展情况和航空航天领域对碳纤维的需求情况,2020年需求量可能达到2.7万吨。军用飞机和商用飞机的需求在2011年为7,010吨,到2015年增长至14,100吨,年均复合增长率为16.9%,预计到2020年需求量将增至19,600吨,年均复合增长率为8.4%。


航空航天领域对碳纤维的需求主要来自两大方面,一是不断增加的碳纤维复合材料的应用比例,二是新增的飞机订单,预计2020年,航空航天对碳纤维的需求将达到2.7万吨。


民用航空方面,碳纤维复合材料自20世纪70年代首次被应用在飞机上的一些二级结构,如整流罩、控制仪表盘和机舱门;近三十年来,碳纤维复合材料的使用逐步进入到机翼、机身等受力大、尺寸大的主承力结构中。


目前世界两个最大的客机——波音和空客,均采用碳纤维结构,平均可实现重量降低20%、燃油成本降低20%。其中,以波音787和空客A350最为抢眼,波音787全机身55%的重量使用碳纤维增强复合材料CFRP。空客A350全机身53%的重量使用碳纤维增强复合材料CFRP。


军用航空方面,碳纤维复合材料得到了国内外的充分重视。目前复合材料已经应用在战绩机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显减重作用。根据中国材料研究学会的数据显示,采用复合材料的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%。例如,美国不断在先进战机中提升碳纤维复合材料的使用比例,从F-15E的2%,F-18E的19%,到第四代战斗机F-22中使用24%的碳纤维复合材料。


此外,近年来无人机(UAV)包括无人作战机(UCAV)发展迅速,由于低成本、轻结构、高机动、大过载、高隐身、长航程的技术特点,决定了其对减重的迫切需求,复合材料的使用比例基本是所有航空器中最高的,美国全球鹰(GlobalHawk)高空长航时无人侦察机共用复合材料达65%,先进无人机复合材料的用量更是不断提升,X-45C、X-47B、“神经元”、“雷神”上都运用了90%的复合材料。近年来无人机除广泛用于军事用途外,在灾情巡逻、环境监控、大地测量空中摄影及气象观察等民用领域的用途越来越广,随着这些飞机逐渐形成批量生产,复合材料在无人机上的用量会继续增加。


在航天领域,碳纤维复合材料不仅符合航天技术对结构材料减轻质量的要求,还符合对结构材料具有高比模量和高比强度的要求,具有性能和功能的可设计性,被大量应用。此外,航天飞行器的重量每减少1公斤,就可使运载火箭减轻500公斤,因此,在航空航天工业中普遍采用先进的碳纤维复合材料。美国、欧洲的卫星结构质量不到总重量的10%,原因就在于广泛使用了高性能复合材料。目前卫星的微波通信系统、能源系统和各种支撑结构件等已经基本做到了复合材料化。在运载火箭和战略导弹方面,碳纤维复合材料以其优异的性能得到了较好的应用与发展,先后成功用于“飞马座”、“德尔塔”运载火箭、“三叉戟”Ⅱ(D5)、“侏儒”导弹等型号;美国的战略导弹MX洲际导弹,俄罗斯战略导弹“白杨”M导弹均采用先进复合材料发射筒。


3. 汽车领域


随着排放标准趋严及低碳生活被人们普遍接受,节能减排已成为汽车工业的重要研究课题,在能源革新有限的情况下,轻量化是解决问题的关键之一。


2015年全球汽车总销量为8,910万辆,相比2014年的8,717万辆增幅为2.2%,预计2020年产能将达到1亿辆。2015年全球碳纤维汽车市场需求量达到了1万多吨,预计到2020年将超过2万吨,未来五年年均增速高达21%,将成为增长最快和需求最大的领域之一。


1) 超跑——最先引入碳纤维


汽车行业引入碳纤维复合材料的原因主要是相比传统钢材和铝材,碳纤维的刚度更强,但重量更轻。但碳纤维材料因为高成本、生产周期长,以及供应链不稳定等,汽车行业最先是在低产量、价格昂贵的超级跑车上使用。


1981年麦克拉伦公司最先在其F1赛车MP4/1上使用了一体式碳纤维车架。2000年后法拉利、兰博基尼等超级跑车制造商也开始在使用碳纤维复合材料造车。其他汽车厂商使用碳纤维材料也大多是在部分车身配件和内饰上使用,其目的更多是为了减轻重量、突出高端运动车性能。


2) 减重——碳纤维需求增长驱动力


政府制定严格的车辆燃料经济性标准和二氧化碳排放法规,是汽车选择碳纤维复合材料的重要推手。车身整体重量的减轻是非常有效的控制尾气排放的手段。汽车重量每降低100公斤,排放量可下降20g/km,普通车需减重245kg才能达到要求的排放标准,电动车需减重50%以上。在所有轻量化材料中,碳纤维复合材料是唯一能将钢质零部件减重50~60%,并保持同等强度的先进材料。


各国近几年均发布了二氧化碳的排放标准。美国于2010年4月和2012年8月分别发布了针对2012-2016(第一阶段)和2017-2025(第二阶段)的轻型汽车燃料经济性及温室气体排放规定,要求2025年美国轻型汽车的平均燃料经济性达到54.5mpg。《轻型汽车污染物排放限值及测量方法(中国第六阶段)》(简称“国六标准”)于2016年12月23日正式发布,将从2020年起正式实施。标准要求,我国2015年CO2排放为155g/km,2020年需降至112g/km;2015年平均油耗为6.9L/(100km),2020年需减至5.0L/(100km)。


表:主要国家地区燃料消耗目标对比



2015

2020

2025

年降幅-2020

年降幅-2025


原始-CO2排放

国标-平均油耗L/100km

原始-CO2排放

国标-平均油耗L/100km

原始-CO2排放

国标-平均油耗L/100km



欧盟

130g/km

5.2

95g/km

3.8

75g/km

3

5.40%

4.20%

美国

36.2mpg

6.7

44.8mpg

6

56.2mpg

4.8

3.50%

3.4

日本

16.8km/L

5.9

20.3km/L

4.9

-

-

3.30%

-

中国

155g/km

6.9

112g/km

5

-

-

5.50%

-

资料来源:ICCT


3) 规模化、产业一体化整合——宝马引入碳纤维结构件


目前,世界各主要汽车厂商,包括宝马、奔驰、奥迪、通用、福特等,都纷纷布局碳纤维产业,并逐步推出导入碳纤维技术的车型。其中,以宝马公司最为突出。德国宝马公司积极购入上游碳纤维工厂股份,与西格里(SGL)成立碳纤维合资公司,联合开发碳纤维增强复合材料,将碳纤维科技大量运用在宝马量产车款上,不仅保证了供应商的稳定,缩短生产周期,同时也将成本降低了30%。


截至2015年,宝马集团车用碳纤维的年产能达到9000吨。宝马汽车在中游三十多种零部件使用了碳纤维复合材料,其中隔音板、前端支架和座椅结构占比最高。


2014年宝马i3全碳纤维车身电动车量产,成为第一个大批量使用碳纤维作为车身材料的整车厂商。宝马i3整车重量仅为1195公斤,相比传统电动车减轻250-350公斤,同时具备最高性能的碰撞安全保护,电池容量仅20kwh,续航里程达160公里,比传统电动车续航里程提高52%。此外,宝马i8将碳纤维应用到车身和内饰中,使车身总重控制在1,540公斤。2015年7月1日,全新第六代BMW7系汽车在丁格芬工厂正式投产,这是宝马核心产品中第一款实现将工业制造的碳纤维材料、高强度钢材和铝材完美组合应用到车身的车型。


图:国外主要汽车厂商与碳纤维供应商合作现状


主机厂

供应商

合作项目

目标

宝马

SGL

成立碳纤维合资公司,SGL持股55.1%,宝马持股44.9%

批量生产碳纤维汽车零部件,为宝马量产i3、i8系列提供材料。宝马持有SGL18.44%股权

大众

SGL

大众持有SGL9.88%股权

兰博基尼、宾利、保时捷等的供应商

奔驰

东丽

成立碳纤维合资公司,东丽持股55.1%,戴姆勒持股44.9%

计划采用短循环树脂迁移模型技术,为戴姆勒公司轿车提供大批量生产的CFRP部件。

通用

东丽

合作开发热塑性碳纤维汽车部件

合作开发60s冲压成型的热塑性碳纤维复合材料部件

丰田

东丽

碳纤维部件开发应用

中级乘用车减重10%

奥迪

VOITH

联合开展碳纤维汽车部件奥迪新型MSF车身结构

Q7采用该结构

福特

陶氏化学

与陶氏化学正式签署合作协议,开发碳纤维复合材料

福特新车大量采用碳纤维

日产

三菱丽阳

碳纤维部件开发应用

平均减重15%

资料来源:中国产业信息网


4) 总结—碳纤维应用在汽车领域


1) 轻量化。碳纤维应用于汽车后,给汽车制造带来最明显的好处就是汽车轻量化,最直接影响的就是节能、加速、制动性能的提升。一般而言,车重减小10%,油耗降低6%~8%,排放降低5~6%,0-100km/h加速性提升8-10%,制动距离缩短2~7m。


2) 安全性。车身轻量化可以使整车的重心下移,提升了汽车操纵稳定性,车辆的运行将更加安全、稳定。碳纤维复合材料具有极佳的能量吸收率,碰撞吸能能力是钢的六到七倍、铝的三到四倍,这进一步保证了汽车的安全性。


3) 可靠性。碳纤维复合材料具有更高的疲劳强度,钢和铝的疲劳强度是抗拉强度的30-50%,而碳纤维复合材料可达70-80%,因此汽车上应用碳纤维复合材料对于材料疲劳可靠性有较大提升。


4) 减少研发周期。由于碳纤维复合材料可设计性比金属强,因此更易于车身开发的平台化、模块化、集成化。这样碳纤维车身及金属平台的混合车身结构对于传统汽车车身结构而言,可以做到模块化、集成化,大大减少零件种类,减少工装投入,缩短开发周期。


4. 风电叶片领域


风力作为清洁能源的代表之一,先于光伏发电受到全球各国的青睐。自20世纪80年代商业化发展以来,经历了全球化的高速增长。截至2015年底,全球累计装机容量达到432.42GW,累计年增长率17%,根据GWEC的预测,全球风电累计装机容量将从2014年的369.6GW增加至2019年的666.1GW,复合增速高达12.5%。风电未来的发展方向,除了向新兴地区,如拉美、非洲等地开拓市场之外,低速风机和海上风机将逐渐成为行业热点。


2015年碳纤维在风能上的应用为16300吨,预计2020年达到30000吨,年均复合增长率为8.1%。


风力发电是世界可再生能源增长最快的领域,风力发电叶片被普遍认为是高性能碳纤维最重要的增长市场,特别是制造超大型风电机组所需叶片(2.5MW风电机组叶片长度达到40m,5MW的风电机组的叶片长度在60m以上),必须使用轻而强、刚而硬的高性能碳纤维复合材料,保证结构强度的同时避免叶片在风载作用下发生大变形甚至撞击风车支柱。


出于经济性考虑,当前主流的叶片为玻璃钢材质(GFRP)。风电机组的大型化和海上化都将极大地拉动对碳纤维叶片的需求增长。海上化的风力发电在要求叶片长度增加的同时,还要求叶片具有良好的抗腐蚀性与抗疲劳性,这些都是碳纤维叶片的独特优势。由此观之,高速扩张的大型风机市场将为碳纤维风力叶片的发展提供广阔的增长空间。根据测算,40米以上的风电叶片中关键结构如梁帽、主梁使用碳纤维复合材料一方面可使叶片自重减少38%,成本降低14%;另一方面提高叶片抗疲劳性能,提高输出功率,以碳纤维为材质可更容易生产出大直径和自适应的风电叶片。


5. 体育休闲领域


2015年年底,全球体育休闲市场碳纤维的用量为0.89万吨,约占总需求的12%,预计到2020年将到达1.7万吨,到2024年将超过1.9万吨,年均复合增长率为2.3%,整体来看产业规模较为稳定,市场趋于饱和,暂时不会具有拉动碳纤维产业规模爆发式增长的动力。


碳纤维在体育休闲市场中,主要使用在高尔夫球杆、曲棍球棍、网球拍、钓鱼竿、自行车架、滑雪板、赛艇等高端休闲体育市场。


6. 压力容器领域


采用碳纤维复合材料缠绕而成的气瓶,有质量轻、承载能力强、抗爆性能好、制造成本低等优点。目前,大多数常用的压力容器为钢制,在力学性能方面有较大局限性;对于高压容器来说,只能靠增加壁厚来提高承载性能。而新型碳纤维复合材料压力容器,采用很薄的金属或非金属内胆,采用比强度较高的碳纤维缠绕而成,在提高压力气瓶承载能力的同时,重量可比同容积的金属气瓶减轻50%。在安全性能上,由多层纤维缠绕而成的压力气瓶即使在内胆出现泄露的情况下,纤维层仍可保证气瓶的安全运行,有足够的时间进行应急处理。在制作程序上,相对钢制容器的复杂工艺,碳纤维气瓶制造工艺要简单得多,通常采用专用数控缠绕机在铝内胆外层缠绕碳纤维,精度很高,节约成本。


碳纤维缠绕气瓶的应用主要包括车用压缩天然气气瓶、航空航天动力系统用轻量化压力容器和气体运输用高压容器。近年来,市场对压力容器需求量的增长愈发乐观。原因之一是燃料电池的低成本突破,如丰田公司燃料电池车MIRAI的量产,会带来对高压氢气瓶的强劲需求。其二是欧美兴起的页岩气收集产业,页岩气的运输、贮藏都需要安全、稳定、经济的高压气瓶,由此对碳纤维压力容器的需求产生推动作用。尽管目前压力容器的市场不大,但却有着较大的增长空间。


作者简介:


孟庆丽,资深碳纤维领域投资人士,专注于碳纤维已经有3年多了,具备宏观和微观视角,也和多家优质的企业及行业专家进行交流,并投资过碳纤维产业链公司。目前就职于一家投资管理公司,关注领域包括:消费升级、新材料、医药健康、TMT。




业界风云


技术洞察


美国科学家用植物制造碳纤维 有效降低成本与污染


据外媒1月23日报道,美国科学家成功利用植物来制造碳纤维,从而降低其原本昂贵的成本,在帮车主省油的同时也能减少碳污染。


碳纤维增强塑料因其轻盈、坚固的特点而被广泛使用于高端车以及赛车材料。用碳纤维制成的汽车比用钢制成的汽车体积要轻,因而所需燃料更少、速度更快、更省油。


然而,大多数用于商业的碳纤维十分昂贵。部分原因是其制造过程的成本十分之高。我们知道,碳纤维由一种叫做丙烯腈化学分子制成,而丙烯腈的制造材料则是石油、氨、氧气和昂贵的催化剂。这不仅意味着碳纤维的成本会受制于多变(上升)的石油价格,而且过程中还会产生大量多余热量和有毒的副产物。


科学家现已发现一种制造碳纤维更经济更环保的方法。美国国家可再生能源实验室的格雷格?贝克汉姆(Gregg Beckham)团队发现,他们可以利用植物废弃的部分,例如玉米秸秆和小麦秸秆,并且成功地制造出了丙烯腈。


根据《科学》杂志最新发表的一份研究表明,科学家们将这些植物材料分解成糖,再转化成酸,并与廉价的催化剂结合生产出了丙烯腈。而且该过程不会产生过多热量,甚至是有毒的副产品。


该研究团队现在和外部公司合作,致力使其生产过程向商业性大规模转变。他们还希望这一新方法制造出的碳纤维在不久的将来能够通过汽车级测试。


格雷格?贝克汉姆说:“我们将会进行更多的基础性研究。我们感到兴奋的是能够扩大丙烯腈的生产规模,同样也期待着这种结实耐用的化学材料能应用于日常生活的方方面面。”





关于张江发展战略研究院

上海张江发展战略研究院是张江国家自主创新示范区的智库和智囊。主要承担了5项工作:

1
为张江示范区建设、决策提供前瞻性政策研究与咨询;

2
为张江培养和建设创新创业领军人才队伍;

3
承担组织重大战略问题的研究与重大重点项目攻关;

4
为张江企业提供学术交流、技术服务、科技成果转化和国际合作;

5
为企业及园区的自主创新能力建设提供技术服务与科技金融,以及智力支撑。